Recent Post
Categories
Archives

Hydroelectric Industry

hydroelectricty_201_600x450

A typical hydro plant is a system with three parts: an electric plant where the electricity is produced; a dam that can be opened or closed to control water flow; and a reservoir where water can be stored. The water behind the dam flows through an intake and pushes against blades in a turbine, causing them to turn. The turbine spins a generator to produce electricity. The amount of electricity that can be generated depends on how far the water drops and how much water moves through the system. The electricity can be transported over long-distance electric lines to homes, factories, and business.

Hydropower plants harness water’s energy and use simple mechanics to convert that energy into electricity. Hydropower plants are actually based on a rather simple concept — water flowing through a dam turns a turbine, which turns a generator.

Here are the basic components of a conventional hydropower plant:

  • Dam – Most hydropower plants rely on a dam that holds back water, creating a large reservoir. Often, this reservoir is used as a recreational lake, such as Lake Roosevelt at the Grand Coulee Dam in Washington State.

  • Intake – Gates on the dam open and gravity pulls the water through the penstock, a pipeline that leads to the turbine. Water builds up pressure as it flows through this pipe.

  • Turbine – The water strikes and turns the large blades of a turbine, which is attached to a generator above it by way of a shaft. The most common type of turbine for hydropower plants is the Francis Turbine, which looks like a big disc with curved blades. A turbine can weigh as much as 172 tons and turn at a rate of 90 revolutions per minute (rpm), according to the Foundation for Water & Energy Education (FWEE).

  • Generators – As the turbine blades turn, so do a series of magnets inside the generator. Giant magnets rotate past copper coils, producing alternating current (AC) by moving electrons. (You’ll learn more about how the generator works later.)

  • Transformer – The transformer inside the powerhouse takes the AC and converts it to higher-voltage current.

  • Power lines – Out of every power plant come four wires: the three phases of power being produced simultaneously plus a neutral or ground common to all three. (Read How Power Distribution Grids Work to learn more about power line transmission.)

  • Outflow – Used water is carried through pipelines, called tailraces, and re-enters the river downstream.

The water in the reservoir is considered stored energy. When the gates open, the water flowing through the penstock becomes kinetic energy because it’s in motion. The amount of electricity that is generated is determined by several factors. Two of those factors are the volume of water flow and the amount of hydraulic head. The head refers to the distance between the water surface and the turbines. As the head and flow increase, so does the electricity generated. The head is usually dependent upon the amount of water in the reservoir.

The expansion of renewable energy systems is an important part of Springs Fabrication, where we have been involved in supporting the production and fabrication of this industry for over a decade. For all of your needs relating to renewable resources, including hydroelectricity please let us help you with a customized design that will exceed your unique specifications.